Abstract

A novel structure of a double-H tuning fork for an angular rate sensor, which can detect two-axial angular rates on a single quartz chip, is proposed in this article. Multiple sensing forks, which are separated from driving forks, guarantee the sensitivities of the two-axial effect and suppress couplings among each mode. Simulation with the finite element method (FEM) is used to analyze the resonance frequencies, electrode distributions, and outputs of this structure. The results show that this double-H tuning fork resonator can be used as an angular rate sensor to detect two-axial angular rates effectively.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call