Abstract

Efficient and sustainable recycling of metal resources from spent lithium-ion batteries (LIBs) is critical for the metal resources security and environment protection. However, the intact exfoliation of cathode materials (CMs) from current collectors (Al foils) and selective extraction of Li towards the in-situ and sustainable recycling of cathodes from spent LIBs are still pending issues. A self-activated and ultrasonic-induced endogenous advanced oxidation process (EAOP) was proposed in this study for selective removal of PVDF and in-situ extraction of Li from CMs of waste LiFePO4 (LFP) to address the above issues. Over 99 wt% CMs can be detached from Al foils after EAOP treatment under the optimized operation conditions. High purity of Al foil can be directly recycled as metallic forms and nearly 100 % of Li can be in-situ extracted from the detached CMs and then recovered as Li2CO3 (>99.9 % in purity). With induction and reinforcement of ultrasonic, S2O82- was self-activated by LFP to generate an increased amount of SO4•− radicals that will attack the PVDF binders to ensure their degradation. The degradation pathway of PVDF and density functional theory (DFT) calculation can also support the analytical and experimental results. Then, the complete and in-situ ionization of Li can be achieved by the further oxidization of SO4•− radicals from LFP powders. This work provides a novel strategy towards efficient and in-situ recycling of valuable metals from spent LIBs with minimized environmental footprint.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call