Abstract

This study aims to use metal ion coordinating method to improve the bioactivity and anti-hydrolysis ability of bioactive peptides. We demonstrated that zinc (Zn) coordination (10:1 mass ratio of peptide to Zn, pH 6.8, 37°C) induced assembly of oat peptides, improved pancreatic lipase (PL) inhibitory activity by 30.4-36.8% and anti-hydrolysis ability against intestinal proteases by 26.5-38.2%; meanwhile, the peptide-Zn complex drastically reduced the PL affinity to the substrate. Detailed mechanism analysis showed that the high hydrophobicity (276 of fluorescent intensity) and dense eutectic structure of peptide-Zn complexes caused the hard hydrolysis of complexed peptides by proteases; in particular, the neutralized surface charges (∼-3.6mV) of complexes imparted the peptide-Zn complex high affinity towards PL (-22.3mV) thus robust PL inhibitory activity. These findings deepened our understanding of the interaction of peptides with metal elements and set the groundwork for the enhancement and protection of bioactive peptides.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call