Abstract

The 'template-assembled synthetic protein' (TASP) concept provides a simple and elegant approach for the preparation of analogues that retain key structural elements. We have synthesized TASP molecules containing the putative active site of relaxin, a peptide that has similar structural features to insulin but a markedly different biological role. Two types of chemoselective thiol ligation strategies (thioether and thiazolidine) were used and compared. The synthetic pendant peptides contain an essential region for bioactivity that is located in the alpha-helical region of the relaxin B-chain. Depending on whether the thioether or the thiazolidine chemistry was used to attach the peptides to the template, the reacting amino acid was placed either at the C-terminus or N-terminus, respectively, thus allowing the choice of orientation relative to the carrier molecule. The template molecule consists of a decapeptide with two proline-glycine turns and four evenly spaced lysine residues that were functionalized with the appropriate chemical moiety. This allowed reaction with the appropriately derivatized peptides in solution. To improve the template ligation step using the thioether approach, a pendant peptide C-terminal cysteamine residue was used to reduce potential steric hindrance during conjugation. The design of the peptides as well as the synthetic strategy resulted in the acquisition of mimetics showing weak non-competitive and weak competitive antagonist properties.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.