Abstract

Low Gain Avalanche Diodes (LGADs) are now considered a viable solution for 4D-tracking thanks to their excellent time resolution and good resistance to high radiation fluence. However, the currently available LGAD technology is well suited only for applications that require coarse space precision, pixels with pitch in the range 500µm–1mm, due to the presence of a no-gain region between adjacent pixels of about 50μm, in which the gain is completely suppressed. In this paper, we will discuss the segmentation issues in the LGAD technology and we will present two new segmentation strategies aimed at producing LGADs with high spatial resolution and high fill factor. The first presented design is the so-called Trench-Isolated LGAD (TI-LGAD). Here, the pixel isolation is provided by trenches, physically etched in the silicon and then filled with silicon oxide. The second design is the Resistive AC-coupled Silicon Detector (RSD), an evolution of LGADs, where the segmentation is obtained by means of AC-coupled electrodes. Prototypes of both designs have been produced at FBK and characterized at the Laboratories for Innovative Silicon Sensors (INFN and University of Turin) by means of a laser setup to estimate the space resolution and the fill factor. The functional characterization shows that both the technologies yield fully working small pixel LGADs (down to 50µm), providing the first examples of sensors able to concurrently measure space and time with excellent precision.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.