Abstract

The mushroom body (MB) is an important part of the Drosophila brain, and is involved in many behaviors, including olfactory learning and memory and some visual cognition. However, the physiological properties of MB neurons remain elusive. Here we used a calcium-imaging technique to study calcium signals in Drosophila MB. We found that, rather than increasing calcium spread, electrical stimuli dramatically decreased calcium signals in the terminals of MB fibers. This novel calcium decrease occurred at all developmental stages from larvae to adults, but was specific for certain regions of the MB neurons. GABA receptor blockade promoted calcium propagation through the MB fibers, but did not disrupt the stimulus-induced decrease in calcium. Furthermore, this decrease in calcium was independent of extracellular calcium concentration and was not due to altered uptake by intracellular calcium stores and mitochondria. Rather, we found that inhibition of sodium-calcium exchangers significantly attenuated the stimulus-induced decrease in calcium, whereas the decrease persisted when membrane calcium pumps were blocked. Our findings indicate that MB neurons exhibit a novel stimulus-induced calcium efflux, which may be importantly regulated by sodium-calcium exchangers in the Drosophila MB.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.