Abstract
Machine learning techniques have been successfully utilized as effective soft sensing for industrial processes. Unfortunately, as modern industrial processes because increasingly complex in the terms of scale and integration, the collected process data become more complicated in terms of dimensionality. Thus, it becomes a great challenge to establish an accurate soft sensor model for dynamic processes. In this article, a novel stacked input-enhanced supervised autoencoder (SISAE) integrated with gated recurrent unit (GRU) is proposed. In SISAE-GRU, the presented SISAE model is used to extract high-level and useful features from collected high-dimensionality process data. Different from the standard stacked autoencoder (SAE) model, the original input variables are embedded into each autoencoder (AE) unit of the presented SISAE model during the pre-training process by supervised learning, enhancing the feature extraction performance of SAE. Considering the dynamic nature between extracted features and output variables, GRU is utilized to learn the dynamic relationships and a dynamic model of soft sensing is finally constructed using a fully connected (FC) layer. To illustrate the effectiveness and superiority of the proposed SISAE-GRU model, two industrial datasets from the debutanizer column and the purified terephthalic acid (PTA) process are utilized. The experimental results show that the proposed SISAE-GRU can reduce the <i>RMSE</i> by 53.6% and 46.1% on average compared with some other state-of-the-art methods for the debutanizer column and PTA, respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Instrumentation and Measurement
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.