Abstract
This paper is concerned with stability for aperiodic sampled-data systems. Firstly, for aperiodic sampled-data systems without uncertainties, a new Lyapunov-like functional is constructed by introducing the double integral of the derivative of the state, the integral of the state, and the integral of the cross term of the state and the sampled state. When estimating the derivative of the Lyapunov-like functional, superior integral inequalities to Jensen inequality are employed to get a tighter upper bound. By the Lyapunov-like functional principle, sampling-interval-dependent stability results are derived. Then, the stability results are extended to aperiodic sampled-data systems with polytopic uncertainties. Finally, some examples are listed to show the stability results have less conservatism than some existing ones.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.