Abstract

IntroductionDespite the advent of biological therapies for the treatment of rheumatoid arthritis, there is a compelling need to develop alternative therapeutic targets for nonresponders to existing treatments. Soluble receptors occur naturally in vivo, such as the splice variant of the cell surface receptor for vascular endothelial growth factor (VEGF) – a key regulator of angiogenesis in rheumatoid arthritis. Bioinformatics analyses predict that the majority of human genes undergo alternative splicing, generating proteins – many of which may have regulatory functions. The objective of the present study was to identify alternative splice variants (ASV) from cell surface receptor genes, and to determine whether the novel proteins encoded exert therapeutic activity in an in vivo model of arthritis.MethodsTo identify novel splice variants, we performed RT-PCR using an mRNA pool representing major human tissue types and tumors. Novel ASV were identified by alignment of each cloned sequence to its respective genomic sequence in comparison with full-length transcripts. To test whether these ASV have biologic activity, we characterized a subset of them for ligand binding, and for efficacy in an animal model of arthritis. The in vivo study was accomplished using adenoviruses expressing secreted ASV.ResultsWe cloned 60 novel human ASV from 21 genes, encoding cell surface receptors – many of which are known to be important in the regulation of angiogenesis. The ASV were characterized by exon extension, intron retention and alternative exon utilization. Efficient expression and secretion of selected ASV – corresponding to VEGF receptor type 1, VEGF receptor type 2, VEGF receptor type 3, angiopoietin receptor Tie1, Met (receptor for hepatocyte growth factor), colony-stimulating factor 1 receptor, platelet-derived growth factor receptor beta, fibroblast growth factor receptor 1, Kit, and RAGE – was demonstrated, together with binding to their cognate ligands. Importantly, ASV derived from VEGF receptor type 1 and Tie1, and to a lesser extent from VEGF receptor type 2 and fibroblast growth factor receptor 1, reduced clinical signs of arthritis in vivo. The reduction was paralleled by decreased joint inflammation and destruction.ConclusionThe present study shows that unique ASV derived from receptors that play key roles in angiogenesis – namely, VEGF receptor type 1 and, for the first time, Tie1 – can markedly reduce arthritis severity. More broadly, our results demonstrate that ASV are a source of novel proteins with therapeutic potential in diseases in which angiogenesis and cellular hyperplasia play a central role, such as rheumatoid arthritis.

Highlights

  • Despite the advent of biological therapies for the treatment of rheumatoid arthritis, there is a compelling need to develop alternative therapeutic targets for nonresponders to existing treatments

  • The present study shows that unique alternative splice variants (ASV) derived from receptors that play key roles in angiogenesis – namely, vascular endothelial growth factor (VEGF) receptor type 1 and, for the first time, Tie1 – can markedly reduce arthritis severity

  • Our results demonstrate that ASV are a source of novel proteins with therapeutic potential in diseases in which angiogenesis and cellular hyperplasia play a central role, such as rheumatoid arthritis

Read more

Summary

Introduction

Despite the advent of biological therapies for the treatment of rheumatoid arthritis, there is a compelling need to develop alternative therapeutic targets for nonresponders to existing treatments. Soluble receptors occur naturally in vivo, such as the splice variant of the cell surface receptor for vascular endothelial growth factor (VEGF) – a key regulator of angiogenesis in rheumatoid arthritis. The objective of the present study was to identify alternative splice variants (ASV) from cell surface receptor genes, and to determine whether the novel proteins encoded exert therapeutic activity in an in vivo model of arthritis. Are desirable, especially for use in combination with TNFα inhibitors Cell surface receptors such as receptor tyrosine kinases (RTKs) mediate ligand-induced signal transduction from the extracellular to the intracellular environment. Etanercept, a molecularly engineered fusion protein composed of the extracellular domain of TNF receptor type II, is an example of a clinically effective soluble receptor-based therapeutic, with potent activity in RA [8]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.