Abstract

In this study, electrogenic microbial communities originating from a single source were multiplied using our custom-made, 96-well-plate-based microbial fuel cell (MFC) array. Developed communities operated under different pH conditions and produced currents up to 19.4 A/m3 (0.6 A/m2) within 2 days of inoculation. Microscopic observations [combined scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS)] revealed that some species present in the anodic biofilm adsorbed copper on their surface because of the bioleaching of the printed circuit board (PCB), yielding Cu2 + ions up to 600 mg/L. Beta- diversity indicates taxonomic divergence among all communities, but functional clustering is based on reactor pH. Annotated metagenomes showed the high presence of multicopper oxidases and Cu-resistance genes, as well as genes encoding aliphatic and aromatic hydrocarbon-degrading enzymes, corresponding to PCB bioleaching. Metagenome analysis revealed a high abundance of Dietzia spp., previously characterized in MFCs, which did not grow at pH 4. Binning metagenomes allowed us to identify novel species, one belonging to Actinotalea, not yet associated with electrogenicity and enriched only in the pH 7 anode. Furthermore, we identified 854 unique protein-coding genes in Actinotalea that lacked sequence homology with other metagenomes. The function of some genes was predicted with high accuracy through deep functional residue identification (DeepFRI), with several of these genes potentially related to electrogenic capacity. Our results demonstrate the feasibility of using MFC arrays for the enrichment of functional electrogenic microbial consortia and data mining for the comparative analysis of either consortia or their members.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call