Abstract

While the theory of Bayesian system identification provides a probabilistic means for reliably and robustly inferring models of a dynamic system and their parameters based on measured dynamic response, exploiting sparseness during online tracking of changing model parameters is not well understood. The focus in this study is to implement the dual Kalman filter for real-time Bayesian sequential state and parameter identification based on noisy sensor signals while incorporating sparse Bayesian learning to impose sparse model parameter changes from their initial reference values. We also want out model to be able to capture the evolution of sparse model parameter changes between two successive time instants. To this end, we present a hierarchical Bayesian model for tracking the joint posterior distribution of the state and model parameter vectors for a monitored dynamical system, where the two afore-mentioned sparseness constraints (sparse changes from reference values and with time) are also effectively incorporated for each time. We show our stochastic model of the structural dynamical system can be represented as a coupled conditionally-linear Gaussian state space model for the state and model parameter vectors, leading to some interesting analytical properties of the method that allow quantities of interest to be calculated in real time by using Kalman filtering equations. The parameters for the measurement and state prediction errors are learned solely from the available data up to the current time and so our method resolves the well-known instability problem in Kalman filtering due to arbitrary assignment of the error-distribution parameters. Finally, two illustrative applications are presented, one for identification of stiffness degradation and the other for input time–history identification where both are based on noisy dynamic response measurements from a structure.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.