Abstract

Walruses (Odobenus rosmarus) are highly vocal amphibious mammals with a range of anatomical specializations that can provide plasticity to their sound emissions. The objective of this descriptive study was to determine whether contingency learning could be used to increase variability and induce novelty in the acoustic behavior of walruses. The subjects were two twelve-year-old captive walruses, a male and a female that had previously been conditioned using food reinforcement to produce several specific sounds in response to different discriminative cues. In the current task, these individuals were encouraged to produce novel sounds and novel sound combinations in air by withholding reinforcement for sounds previously emitted in a given session and providing reinforcement only for qualitative differences in emitted sounds. Following training in air, the walruses were tested under water with the same reinforcement contingency. The subjects responded as they had done in air, by varying their underwater sound emissions until reinforcement was provided. Many of the sounds and sound combinations produced by the subjects during underwater testing were quite different from those produced during training in air and those produced under water during baseline observations. Both the male and female spontaneously emitted knocks and soft bells which are components of the songs known to be emitted by mature male walruses during the breeding season. The finding that reinforced variability can induce creativity in sound production is consistent with recent experiments on budgerigar birds showing that vocal topographies, like motor responses, may be influenced by contingency learning.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call