Abstract

Two-dimensional transition metal carbide/nitrides, typically represented by Ti3C2Tx, have been believed as a potential novel microwave absorption material because of their unique two-dimensional (2D) laminated structure, native defects and abundant surface chemistry. However, its intrinsic single dielectric loss mechanism limits the future improvement of microwave absorption properties. Herein, we report a simple solvothermal route for in situ heterogeneous nucleation and growth of Fe3O4 magnetic nanoparticles on the Ti3C2Tx MXene surface and interlayer, which is denoted as Fe3O4@Ti3C2Tx nanocomposites, thus balancing the impedance matching, introducing more loss mechanism and enhancing microwave absorption performance. Interestingly, the solvothermal process provides a reducing environment which protects Ti3C2Tx MXene from oxidation at temperature up to 200 °C, endowing Ti3C2Tx MXene a high stability compared with hydrothermal process. The sample containing 25 wt% Fe3O4 exhibits an impressive microwave absorption performance, the minimum RL of −57.2 dB at 15.7 GHz and an effective absorption bandwidth of 1.4 GHz (thickness 4.2 mm), which is mainly attributed to the suitable impedance matching, enhanced interface polarization and Debye relaxation caused by unique laminated heterointerface structure of Fe3O4@Ti3C2Tx. This work provides a simple and novel strategy for the modification of MXene and the development of high performance MXene based microwave absorbing materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.