Abstract

AbstractA novel system has been developed to catalyze reactions at the oil/water interface of a biphasic liquid system. Stabilization of emulsions was accomplished through the use of nanohybrids composed of hydrophilic oxide particles and hydrophobic Single-Walled Carbon Nanotubes (SWNT), generated in the CoMoCAT process. These nanohybrids are inherently amphiphilic, and tend to adsorb at the interface of a biphasic water/oil liquid system. When enough energy is added to the system, these particles stabilize emulsions by suppressing the coalescence of the droplets and increasing the viscoelastic or pseudoplastic character of the liquid film between droplets. , Depending on contact angle of the particles at the liquid-liquid interface it was possible to stabilize water-in-oil or oil-in-water emulsions. The resulting emulsions are remarkably stable against coalescence and sedimentation, and can be easily separated by filtration or centrifugation, which make them suitable for applications in interfacial catalytic processes in which the catalyst can be easily recovered after reaction. Catalytic activity was imparted by transition metal clusters supported onto the nanohybrids. These metals selectively catalyze reactions at the Oil/Water interface. The proof-of-concept of the biphasic hydrogenation and condensation catalysis was obtained with three reactions of interest in biorefining. The first example was the hydrodeoxygenation of vanillin (4-hydroxy-3-methoxybenzaldehyde). The second example was the conversion of molecules that were exclusively soluble in the aqueous or the organic phase, like glutaraldehyde (water phase) and octanal (oil phase). In the third example we explored a tandem reaction sequence in which Pd-catalyzed hydrogenation was paired with a preceding Aldol-condensation of 5- methylfurfural and acetone. It was demonstrated that with these nanohybrids it is possible to selectively accomplish hydrodeoxygenation and condensation reactions at the water/oil interface of a biphasic system, followed by migration of the products to the oil phase. This contribution provides a proof-of-concept for a promising catalytic system with many potential applications in the liquid phase, such as bio-oil upgrading, production of specialty chemicals, and pharmaceutical applications in which selective reaction and product separations, based on water solubility can be desirable.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.