Abstract

NaHCO3 was used as a novel activator to produce cassava ethanol sludge-based biochar. The NaHCO3-activated biochar showed superior adsorption capacity for tetracycline (154.45 mg/g) than raw biochar (34.04 mg/g). Orthogonal experiments confirmed the optimal preparation conditions of biochar. Increasing adsorbent dosage and temperature facilitated tetracycline removal. The maximum removal was 92.60% at pH = 3.0. Calcium ions and alkalinity decreased tetracycline removal. The time for attaining equilibrium was extended with increasing tetracycline concentration, but the equilibrium could be completed within 24 h. Langmuir model fitted the equilibrium data well. Kinetics process followed the Elovich model. The adsorption rate was controlled by both intraparticle and liquid film diffusion and the process was endothermic and spontaneous. The electrostatic attraction, hydrogen bonding, π-π interactions, and pore-filling were involved in the adsorption mechanism. The findings may provide an underlying guide for sludge disposal and removal of tetracycline from wastewater in practical application.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call