Abstract

A sodium alkyl disulfate mixture (SADM) synthesised from microbially produced 3-hydroxy fatty acids methyl esters (HFAMEs), showed 13-fold surface tension decrease when compared with the reference surfactant sodium dodecyl sulfate (SDS). Polyhydroxyalkanoates, accumulated by bacteria intracellularly when supplied with a mixture of fatty acids derived from hydrolysed rapeseed oil, were isolated, depolymerised and methylated to produce HFAMEs in very high yield (90%). A sequential chemical reduction and sulfation of the HFAMEs produced the sodium alkyl disulfates in high yields (>65%). SADM performs also 1.3-times better than dodecyl (1,3) disulfate, in surface tension tests. SADM shows also the formation of a specific critical micelle concentration (CMC) at a concentration 21-fold lower than SDS. The wettability of the SADM mixture is similar to SDS but the foaming volume of SADM is 1.5-fold higher. The foam is also more stable with its volume decreasing 3 times slower over time compared to SDS at their respective CMC values. Established sulfation technologies in chemical manufacturing could use the 3-hydroxy fatty acids methyl esters moiety (3-HFAME) given its origin from rapeseed oil and the extra OH residue on 3-position in the molecule, which affords the opportunity to produce disulfate surfactants with a proven superior performance to monosulphated surfactants. Thus, not only addressing environmental issues by avoiding threats of deforestation and monocultivation associated with palm oil use but also achieve a higher performance with lower use of surfactants.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call