Abstract

In this study, novel porous sodalite (SOD) was synthesized through Reactive Oxidation Species (ROS) route from industrial waste lithium silicon fume (LSF) to stabilize nZVI (SOD@nZVI), and used as an outstanding persulfate (PS) activator for efficient organic degradation. Characterization results revealed nZVI evenly distributed on SOD via ion-exchange, and the fabricated SOD@nZVI exhibited high stability and superior reactivity over a wide pH range of 2–12 during oxidation reaction. The mechanism responsible for fast organic degradation in the SOD@nZVI+PS system was carefully investigated, and weak magnetic field (WMF) and friction were found to contribute to improved SOD@nZVI performance. The fast redox cycle of Fe2+/Fe3+ on SOD@nZVI can be stimulated by changing the mixing condition and altering the friction layer to harvest mechanical energy during the reaction, which can maximum persulfate activation to generate more reactive radicals for organic fast degradation. This study is of great significance, as it offers a practical route turning waste into excellent PS activator for in-situ organic pollution remediation, as well as proposing a new idea to maximum PS activation performance by manipulating the inner lining of reactor.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call