Abstract

In order to avoid the high energy consumption in SO2 capture with aqueous amine absorbents, a liquid–liquid SO2 phase-change absorbent (SPCA) was developed in the present work using N,N-dimethylaniline (DMA) as absorbent, and high-boiling liquid paraffin was used as solvent to adjust the boiling point of the solution. The homogeneous solution would form two immiscible liquid phases after SO2 bubbling, only the SO2-rich phase needed to be desorbed, which could effectively reduce the energy consumption. Different from the liquid–solid phase-change absorbents developed in our previous work, the liquid–liquid phase-change absorbent avoid their shortcomings such as difficulties in separation of absorption products. The absorption product of SPCA was proved to be a charge-transfer complex DMA·SO2 by NMR and FTIR characterization, and the phase-change mechanism was attributed to the polarity variation between DMA and DMA·SO2. The viscosities of SPCAs was lower than 11.65 mPa·s, and the viscosity of SO2-rich phas...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call