Abstract

This is a pioneer study of single nucleotide polymorphisms (SNPs) within the entire promoter region (1204 bp) of the dominant pPAG2-L subfamily in the pig. The pPAG2-L subfamily was sequenced/examined using genomic deoxyribonucleic acid (gDNA) templates of crossbreed pigs (Landrace x Large White), and compared to two bacterial artificial chromosome (BAC) clones containing gDNA of the Duroc breed (as the positive controls). Our analysis of the pPAG2-L promoter identified 31 SNPs and one InDel mutation in crossbreed pigs. Among 42 SNPs identified in two BAC clones, 24 SNPs had not been previously detected in crossbreed pigs. The sequence alignment of pPAG2-L promoter, performed with Lasagne-Search 2.0, Cluster Bluster and MatInspector software, revealed a total of 28 transcription factor binding sites (TFBS) and 10 TFBS (AP-1, CCAAT, CHOP:C, FOXP1, LSF, MRF-2, Myc, NF1, NF-Y, TGIF) within SNPs in the core sequences. It was noted that TFBS (NF1) was found to be unique to the pPAG2 promoter sequence containing SNPs: g.-1100G>A(R), g.-1101T>C(Y), represented by GA and TC genotypes (p x = 0.12). Our broad-based novel database thus provides an SNP PAG2-L pattern for modern genotyping of female and male progenitors. This is required for further studies of various potential correlations between guiding SNP genotypes of the pPAG2-L subfamily in the sows of many breeds, in which the most economically important reproductive traits are properly documented on each farm.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.