Abstract

Wastewater treatment remains the most significant delinquent issue world-wide. Generally, wastewater treatment involves filtration followed by acidified de-emulsification through photocatalytic reduction. The aim of the present study is to reduce the use of nanoparticles in wastewater treatment and also to find an appropriate alternative to replace cotton fiber filters used in water treatment plant. The cotton fiber filters are highly prone to bacterial film development leading to bactericidal degradation of the fibers. We developed a ZnO-chitosan nanocomposite coated fiber for wastewater treatment to enhance its photocatalytic activity under acidic condition. The fiber showed high degree of photocatalytic degradation activity, reducing rhodamine B dye, chemical oxygen demand and chromium levels in the synthetic wastewater to 37, 79 and 51% respectively under highly acidic condition. Additionally, ZnO-chitosan nanocomposite did not cause mortality on Danio rerio embryo after 72 h incubation. The ZnO-chitosan nanocomposite coated fiber showed strong antibacterial activity against Escherichia coli and Staphylococcus aureus with a reduction of 96% and 99% respectively. This study demonstrated the potential of a novel smart fiber in wastewater treatment and biomedical applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call