Abstract

We report on a new radioprotector, UTS-1401, a small molecule that was synthesized (by one of us, JS) and evaluated here for its radioprotective effect against total-body irradiation (TBI). Female and male NIH Swiss mice were subjected to TBI at doses of 6.5, 7.5 and 8.5 Gy either with or without a 24 h pretreatment of UTS-1401 given ip and observed for 30 days. Survival rates were significantly increased when mice were treated with UTS-1401 compared to those not treated. The radioprotective effect of UTS-1401 was drug-dose dependent for male mice exposed to 8.5 Gy TBI with 150 mg/kg of UTS-1401 as the optimal dose. The radioprotective effect of UTS-1401 on female mice exposed to 8.5 Gy TBI was observed at 50, 100, and 150 mg/kg, with no dose response relationship noted. Female mice were more radioresistant than male mice with LD50/30 values of 7.8 Gy vs. 6.8 Gy, respectively. Weight changes after UTS-1401 alone showed a significant body weight increase at 150 mg/kg. Both the ip and iv route for UTS-1401 were similarly effective for male mice exposed to 8 Gy TBI. Further analysis using an endogenous spleen colony assay demonstrated that pretreatment of UTS-1401 for up to 72h prior to TBI protected both spleen weight and hematopoietic stem cells with a treated/untreated ratio between 2.0 and 3.2 for the latter for times between 0.5 h and 72 h. A separate invivo study showed that pretreatment of UTS-1401 protected bone marrow CFU-GM for mice exposed to TBI. In summary, UTS-1401 is a promising small-molecule radioprotective agent as demonstrated by whole animal, hematopoietic stem cell and bone marrow myeloid progenitor cell survival.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.