Abstract

There is a need for friendly and affordable wound dressing materials capable of uptaking and releasing active clinical agents. Proper combinations of materials that could quickly release antibiotics at the beginning, then slow and controlled release with time would make excellent materials for wound care management. In this study, cotton handwoven fabric hydroxyapatite (derived from coralline skeletons) polylactic acid composites were developed. The developed composites were characterized in terms of their physical and mechanical properties. Also, the in vitro drug release profiles for the developed composites were established. Bacteria efficacy of natural antimicrobial agents loaded composites against gram-positive bacteria Staphylococcus aureus (S. aureus) was also studied. The results suggested that the hand-weaving method has the potential to control the porosity of the fabric for different applications. Woven fabric with 1 mm pore sizes is suggested to have better particle uptake properties and moderate mechanical and physical properties suitable for wound dressing applications. Particle embedment capacity (w/w %) seemed to increase as the fabric pore sizes increases. On the other hand fabric with 1 mm pore sizes uptakes the highest amount of particles (0.174 g). A combination of coralline derived hydroxyapatite particles with cotton fabric suggested controlling the drug release rate by 30% compared with the fabric without the particles, appropriate for prolonged drug release applications. The released drug and natural antimicrobial agents from the developed composites suggested inhibiting microbial growth in which honey performed close to a clinical antibiotic. It was recommended to conduct an in vivo study for the developed composite.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.