Abstract

Novel heterostructures based on silicon quantum dots and molybdenum disulfide nanosheets (SiQDs–MoS2) were synthesized by a hydrothermal method, in which the introduced SiQDs play a determining role in manipulating the morphology, phase and band structure of MoS2. The resultant SiQDs–MoS2 is uniform flowerlike 3D microspheres assembled from petallike 2D MoS2 nanosheets anchored with 0D SiQDs, possessing abundant active sites. Besides, the primary MoS2 nanosheets consist of both semiconductive 2H and metallic 1T phases accompanied with intralayer mesopores and expanded interlayer spacing, endowing the resulting architectures with effective electron transfer. Significantly, the as-synthesized SiQDs–MoS2 exhibits intense full solar-spectrum absorption, indicating efficient solar energy harvesting. First-principles calculations simulate similar increased spectral absorption of monolayer MoS2 adhered with a Si cluster, suggesting the existence of new energy states associated with the integration of SiQDs and MoS2 nanosheets as evidenced by photoluminescence (PL) spectral analysis. As expected, the current SiQDs–MoS2 heterostructures demonstrate substantial photocatalytic activity even under visible and near-infrared (NIR) light on degradation of malachite green (MG). The type II electronic structure of SiQDs–MoS2 was proposed, enabling sufficient photogenerated electrons and holes for the photocatalytic reactions. This study may establish a new frontier on the rational design and feasible development of the hybrid structures with the desirable morphologies, phase compositions and band structures for the catalysis and beyond.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.