Abstract

AbstractWe have scrutinized five novel silylphenol antioxidants, including 2‐silylphenol (1), 4‐silylphenol (2), 2,6‐disilylphenol (3), 2,4‐disilylphenol (4), and 2,4,6‐trisilylphenol (5), at M06/6–311++G** level of theory. To evaluate the antioxidant efficiency, the electronic effects on O─H bond dissociation energy (BDE) and vertical ionization potential (IPv) of 1–5 are investigated, which are mainly governed by electronic effects. The conductor‐like polarized continuum model (CPCM) is applied to measure the antioxidant capacity in the solution phase. The results show that antioxidants with the lowest BDE and IPv values can efficiently act via hydrogen atom transfer (HAT) and single electron transfer (SET) mechanisms, respectively. The stability of resulting radicals is measured by nucleus independent chemical shift (NICS) index, natural bond orbital (NBO) analysis, and nucleophilicity (N) index. The BDE shows lower values in the gas phase with respect to water, while water exhibits lower IPv values than gas. Structure 5 turns out as the most efficient antioxidant. The overall order of antioxidant efficiency in both gas and water phases is 5 > 2 > 3 > 4 > 1.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.