Abstract

Peritoneal adhesions, a common postoperative complication of laparotomy, are still treated with physical barriers, but their efficacy and ease of use are controversial. In this paper, we developed a wound microenvironment-responsive hydrogel composed of Antheraea pernyi silk protein (ASF) from wild cocoons and tyramine-modified hyaluronic acid (HA-Ph) loaded with azithromycin (AZI), glucose oxidase (GOX), and horseradish peroxidase (HRP). In addition, GOX-catalyzed oxygen production enhanced the antibacterial ability of the hydrogel. Moreover, the drug-loaded hydrogel increased macrophage CD206 expression while decreasing IL-6 and TNF-α expression. More importantly, the retarding effect of this novel hydrogel system on AZI almost eliminated the appearance of postoperative adhesions in rats. It was also found that the novel hydrogel enhanced the modulation of the TLR-4/Myd88/NF-κB pathway and TGF-β/Smad2/3 pathway by azithromycin in the locally damaged peritoneum of rats, which accelerated the remodeling of damaged tissues and dramatically reduced the deposition of collagen. Therefore, spraying the novel drug-loaded hydrogel on postoperative abdominal wounds can effectively inhibit the formation of postoperative adhesions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.