Abstract

Herein, novel silicon (IV) phthalocyanines peripherally substituted by triethylene glycol groups and bearing axial hydroxyl groups were synthesized and fully characterized by using different analyses techniques. The photophysical and photochemical properties of octa (2a) and tetra (2b) derivatives were investigated in DMF and DMSO. The effect of octa or tetra substitution on fluorescence quantum yield, singlet oxygen generation and photodegradation were examined, and the differences were evaluated regarding their potential efficiency in photodynamic therapy (PDT). Their pH-responses were investigated to determine the influence of protonation of azomethine nitrogen atoms on singlet oxygen generation efficiencies. Dramatic optical changes were observed by protonation of azomethine bridges of 2a and 2b. They exhibited signal decrease from pH4.0 to 1.0 for 2a (pKa=2.6) and pH3.0 to 1.0 for 2b (pKa=1.8). Besides, the compounds exhibited no aggregation tendency, moderate fluorescence quantum yield, solubility in common organic solvents, high singlet oxygen quantum yield and high photostability in DMF and in DMSO, these favorable properties making them good candidates as photosensitizer for PDT.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.