Abstract

In hypertension, increased peripheral resistance maintains elevated levels of arterial blood pressure. The increase in peripheral ressitance results, in part, from abnormal constrictor and dilator responses and vascular remodeling. In this review, we consider four cellular signaling pathways as possible explanations for these abnormal vascular responses: (1) augmented signaling via the epidermal growth factor receptor to cause remodeling of the cerebrovasculature; (2) reduced sphingolipid signaling leading to blunted vasodilation and increased smooth muscle proliferation; (3) increased signaling via Rho/Rho kinase leading to enhanced vasoconstriction, and (4) a relative state of microtubular depolymerization favoring vasoconstriction in hypertension. These novel cell signaling pathways provide new pharmacological targets to reduce total peripheral vascular resistance in hypertension.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.