Abstract

Molecular structure of starch in daily diet is closely associated with diabetes management. By enzymatically reassembling α-1,4 and α-1,6 glycosidic bonds in starch molecules, we have synthesized an innovative short-clustered maltodextrin (SCMD) which slowly releases glucose during digestion. Here, we investigated the potential benefits of the SCMD-containing diet using diabetic db/db mice. As compared to a diet with normal starch, this dietary style greatly attenuated hyperglycemia and repaired symptoms associated with diabetes. Additionally, in comparison with acarbose (an α-glucosidase inhibitor) administration, the SCMD-containing diet more effectively accelerated brown adipose activation and improved energy metabolism of db/db mice. Furthermore, the SCMD-containing diet was a more suitable approach to improving the intestinal microflora than acarbose administration, especially the proliferation of Mucispirillum, Akkermansia, and Bifidobacterium. These results reveal a novel strategy for diabetes management based on enzymatically rebuilding starch molecules in the daily diet.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.