Abstract

In this work, we demonstrated a sensor array with multiple fluorescence channels using dendritic mesoporous silica nanoparticles embedded with three quantum dots for the determination of four heavy metal ions (Hg2+, Cu2+, Cr3+, and Ag+). Carboxyl-modified CdTe QDs with three different fluorescence emission wavelengths were loaded onto a dendritic mesoporous supporter by an amidation reaction. The fluorescence sensor array exhibited excellent analytical performance for discrimination and semi-quantification of heavy metal ions from a single test, which simplified detection procedures. The four heavy metal ions exhibited different degrees of quenching of the fluorescence emission intensities of the three quantum dots and resulted in a variant data matrix for linear discriminant analysis. Under optimized conditions, the fluorescence sensor array discriminated the four heavy metal ions in a concentration range of 0.05–5 μmol/L, and semi-quantified Hg2+, Cu2+, Cr3+, and Ag+ with a limit of detection of 2.51 nmol/L, 5.15 nmol/L, 3.81 nmol/L, and 5.74 nmol/L, respectively. The fluorescence sensor array integrated the sensing units into a single nanoparticle instead of the complex multiple detection steps used in traditional sensor arrays, providing an alternative strategy for constructing a single-well sensing platform. Furthermore, the fluorescence sensor array showed great practical potential for distinguishing heavy metal ions in raw water and crayfish samples.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call