Abstract

In this work, we demonstrated a sensor array with multiple fluorescence channels using dendritic mesoporous silica nanoparticles embedded with three quantum dots for the determination of four heavy metal ions (Hg2+, Cu2+, Cr3+, and Ag+). Carboxyl-modified CdTe QDs with three different fluorescence emission wavelengths were loaded onto a dendritic mesoporous supporter by an amidation reaction. The fluorescence sensor array exhibited excellent analytical performance for discrimination and semi-quantification of heavy metal ions from a single test, which simplified detection procedures. The four heavy metal ions exhibited different degrees of quenching of the fluorescence emission intensities of the three quantum dots and resulted in a variant data matrix for linear discriminant analysis. Under optimized conditions, the fluorescence sensor array discriminated the four heavy metal ions in a concentration range of 0.05–5 μmol/L, and semi-quantified Hg2+, Cu2+, Cr3+, and Ag+ with a limit of detection of 2.51 nmol/L, 5.15 nmol/L, 3.81 nmol/L, and 5.74 nmol/L, respectively. The fluorescence sensor array integrated the sensing units into a single nanoparticle instead of the complex multiple detection steps used in traditional sensor arrays, providing an alternative strategy for constructing a single-well sensing platform. Furthermore, the fluorescence sensor array showed great practical potential for distinguishing heavy metal ions in raw water and crayfish samples.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.