Abstract

Alzheimer's disease, one of the most important brain pathologies associated with neurodegenerative processes, is related to overactivation of calpain-mediated proteolysis. Previous data showed a compelling efficacy of calpain inhibition against abnormal synaptic plasticity and memory produced by the excess of amyloid-β, a distinctive marker of the disease. Moreover, a beneficial effect of calpain inhibitors in Alzheimer's disease is predictable by the occurrence of calpain hyperactivation leading to impairment of memory-related pathways following abnormal calcium influxes that might ensue independently of amyloid-β elevation. However, molecules currently available as effective calpain inhibitors lack adequate selectivity. This work is aimed at characterizing the efficacy of a novel class of epoxide-based inhibitors, synthesized to display improved selectivity and potency towards calpain 1 compared to the prototype epoxide-based generic calpain inhibitor E64. Both functional and preliminary toxicological investigations proved the efficacy, potency, and safety of the novel and selective calpain inhibitors NYC438 and NYC488 as possible therapeutics against the disease.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.