Abstract

In order to perform X-ray crystallographic analysis, protein crystals are removed from their growing solution by means of a nylon loop, which is then mounted on a goniometer. As this process is repeated for a large number of crystals, there is a need for automation, especially with regard to the placement on the nylon loop. A novel technique involving the use of acoustic radiation forces and a micro-machined fluidic device is introduced here. After insertion into the micro-machined channel, the crystals are positioned in a row along its centre-line by excitation of a high-frequency standing pressure field, and then moved towards an orifice by applying a flow along the channel, which also ensures spatial separation. Once located in a defined orifice, the single crystals can be removed using a nylon loop. X-ray crystallographic analysis showed that application of ultrasound does not influence the diffraction properties of the crystals.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.