Abstract

In order to exploit novel multi-stimuli responsive fluorescent materials, a series of novel fluorescent molecules of salicylic acid derivatives were designed and synthesized via introducing pyrazole or cyclopentane to the salicylic acid scaffold through a special Schiff base–acylhydrazone, and the molecular structures of representative compounds A2 and A4 were verified via single crystal X–ray diffraction. All title molecules could exhibit obvious solvatofluorochromism from cyan to indigo in several solutions with different polarity. The fluorescence titration data exhibited compound A2 and complex A2-Cu2+ with prime detection limits to Cu2+ (0.24 μM) and S2- ions (2.83 μM). The sensitive recognition of A2 to trifluoroacetic (TFA) and A2-TFA to triethylamine (TEA) were also confirmed via fluorescent titration experiments in various solutions, respectively. What’s more, the 1H NMR and UV/Vis absorption spectra further explained the mechanism between molecules and ions or molecules and TFA/TEA. Besides, the photoswitching properties of the compounds A2 and A3 could be demonstrated via the irradiation of special wavelength light or heating accompanied with changes in quantum yields. In addition, these phenomena of multiple responses were explained via Density Functional Theory (DFT) based on the Gaussian calculations. Thus, this work provided a preliminary basis for the research of multi-stimuli responsive fluorescent molecules with photoswitching properties.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call