Abstract

This paper accounts for novel, low-cost, eco-friendly route for rapid biosynthesis of copper nanoparticles. Cysteine proteases present in the latex of Calotropis procera L. were used to fabricate copper nanoparticles from copper acetate. Copper nanoparticles were initially characterized by transmission electron microscopy (TEM) and X-ray diffraction technique (XRD). Transmission electron microscopy (TEM) was used to estimate the size and shape of nanoparticles. The average size of copper nanoparticles was found to be 15±1.7nm. Energy dispersive analysis of X-rays (EDAX) showed distinct peaks of copper. Fourier transform infrared spectroscopy (FTIR) was performed to confirm capping behavior of the latex proteins that contributed to long term stability of copper nanoparticles (6 months) in aqueous medium. Copper nanoparticles synthesized by above method were monodisperse type. Cytotoxicity studies of latex stabilized copper nanoparticles were carried out on HeLa, A549 and BHK21 cell lines by MTT dye conversion assay. HeLa, A549 and BHK21 cells showed excellent viability even at 120μM concentration of copper nanoparticles. This shows that copper nanoparticles synthesized by above method hold excellent biocompatibility.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.