Abstract

OBJECTIVESylvian fissure dissection following subarachnoid hemorrhage (SAH) is a challenging but fundamental skill in microneurosurgery, and one that has become increasingly difficult to develop during residency, given the overarching management trends. The authors describe a novel rodent model for simulation of sylvian fissure dissection and cerebrovascular bypass under SAH conditions.METHODSA standardized microvascular anastomosis model comprising rat femoral arteries and veins was used for the experimental framework. In the experimental protocol, following exposure and skeletonization of the vessels, extensive, superficial (1- to 2-mm) soft-tissue debridement was conducted and followed by wound closure and delayed reexploration at intervals of 7, 14, and 28 days. Two residents dissected 1 rat each per time point (n = 6 rats), completing vessel skeletonization followed by end-to-end artery/vein anastomoses. Videos were reviewed postprocedure to assess scar score and relative difficulty of dissection by blinded raters using 4-point Likert scales.RESULTSAt all time points, vessels were markedly invested in friable scar, and exposure was subjectively assessed as a reasonable surrogate for sylvian fissure dissection under SAH conditions. Scar score and relative difficulty of dissection both indicated 14 days as the most challenging time point.CONCLUSIONSThe authors' experimental model of femoral vessel skeletonization, circumferential superficial soft-tissue injury, and delayed reexploration provides a novel approximation of sylvian fissure dissection and cerebrovascular bypass under SAH conditions. The optimal reexploration interval appears to be 7-14 days. To the authors' knowledge, this is the first model of SAH simulation for microsurgical training, particularly in a live animal system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call