Abstract

This paper focuses on addressing the issue of absolute stability for uncertain Lur’e systems with time-varying delay using a delay-segmentation approach. The approach involves decomposing the delay interval into two distinct subintervals of unequal lengths. This allows for the introduction of a delay-segmentation-based augmented Lyapunov–Krasovskii functional that ensures piecewise continuity at the partition points. By selecting two sets of Lyapunov matrices for the time-varying delay in each interval, the obtained results are less conservative, providing a more accurate assessment of absolute stability. Finally, a numerical example is given to demonstrate the superiority of the delay-segmentation approach.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call