Abstract

Abstract To improve the efficiency of robots, a novel sustainable design of a robotic arm is proposed that can address the thermal, vibration, energy usage and dynamic stiffness issues. The proposed design utilises easy-to-produce carbon fibre tubes including some that are commercially available, for the robot link instead of traditional materials, which can be heavy and carbon intensive. The design involves arranging several carbon fibre reinforced polymer (CFRP) tubes in a specific array inside an epoxy resin substrate. Based on this design, a Finite Element Analysis (FEA) was implemented demonstrating the relatively low mass and high stiffness characteristics. Design optimisation was then performed using custom generated MATLAB® code to reduce the computation time. The proposed design for a one-meter-long robot link with a diameter of 108 mm offers a stiffness of 0.75 N/μm. A structural steel link, with the same stiffness, is 33 % heavier than the concept design. The design maintains thermal stability with about a third of the thermal deformation seen in structural steel.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.