Abstract

Marine viruses play a major role in the energy and nutrient cycle and affect the evolution of their hosts. Despite their importance, there is still little knowledge about RNA viruses. Here, we have explored the Atlantic Ocean, from surface to deep (4.296 m), and used viromics and quantitative methods to unveil the genomics, biogeography, and the mass contribution of RNA viruses to the total viroplankton. A total of 2481 putative RNA viral contigs (>500 bp) and 107 larger bona fide RNA viral genomes (>2.5 kb) were identified; 88 of them representing novel viruses belonging mostly to two clades: Yangshan assemblage (sister clade to the class Alsuviricetes) and Nodaviridae. These viruses were highly endemic and locally abundant, with little or no presence in other oceans since only ≈15% of them were found in at least one of the Tara sampling metatranscriptomes. Quantitative data indicated that the abundance of RNA viruses in the surface and deep chlorophyll maximum zone was within ≈106 VLP/mL representing a potential contribution of 5.2%-24.4% to the total viroplankton community (DNA and RNA viruses), with DNA viruses being the predominant members (≈107 VLP/mL). However, for the deep sample, the observed trend was the opposite, although as further discussed, several biases should be considered. Together these results contribute to our understanding of the diversity, abundance, and distribution of RNA viruses in the oceans and provide a basis for further investigation into their ecological roles and biogeography.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call