Abstract
A novel reversible zinc(II) chemosensing ensemble (2·Zn(2+)) allows for selective "turn-on" fluorescence sensing of ATP and PPi in aqueous media (detection limits: 2.4 and 1.0 μM, respectively) giving selective binding patterns: ATP ∼ PPi > ADP ≫ AMP > monophosphates ≈ remaining ions tested. The conjugated hydrazone [C═N-NH-R] resists hydrolysis considerably, compared to the imine [C═N-CH2-R, pyridin-2-ylmethanamine] functionality, and generalizes to other chemosensing efforts. Prerequisite Zn(2+)·[O(phenol)N(imine)N(pyr)] binding is selective, as determined by UV-vis and NMR spectroscopy; ATP or PPi extracts Zn(2+) to regenerate the ligand-fluorophore conjugate (PPi: turn-on, 512 nm; detection limit, 1.0 μM). Crystallography, 2-D NMR spectroscopy, and DFT determinations (B3LYP/631g*) support the nature of compound 2. 2-Hydrazinyl-pyridine-salicylaldehyde conjugation is unknown, as such; a paucity of chemosensing-Zn(2+) binding reports underscores the novelty of this modifiable dual cation/anion detection platform. A combined theoretical and experimental approach reported here allows us to determine both the potential uniqueness as well as drawbacks of this novel conjugation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.