Abstract

Electrophilic compounds such as glyoxals, which are toxic due to their reactive carbonyl group, are generated in vivo through various pathways. In this study, we obtained evidence indicating that the nemRA operon, previously reported to encode a repressor and the N-ethylmaleimide reductase, respectively, is co-transcribed with the 3'-proximal gloA gene encoding glyoxalase I. The operon is not only involved in cytosolic detoxification but is also regulated by electrophiles such as quinones and glyoxals. A gel mobility shift assay revealed that purified NemR repressor bound to DNA was dissociated upon interaction with quinones and glyoxals, while their reduced forms were ineffective. The cysteines of NemR at 21 and 116 were essential in sensing electrophiles in vivo and in vitro. Reversible intermolecular disulphide bonds were observed with a reducing agent as well as with electrophiles. DNA binding affinity reduced by glyoxal was also increased with a reducing agent. The NemA reductase, an FMN-containing enzyme, exhibited catalytic activity toward various electrophiles including quinones, while GloA played a major role in glyoxal detoxification. Therefore, we propose that cells have a cytosolic system consisting of the nemRA-gloA operon for the reduction of electrophiles, especially quinones and glyoxals, to maintain an appropriate intracellular redox balance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.