Abstract
Air pollution is the origination of particulate matter, chemicals, or biological substances that brings pain to either humans or other living creatures or instigates discomfort to the natural habitat and the airspace. Hence, air pollution remains one of the paramount environmental issues as far as metropolitan cities are concerned. Several air pollution benchmarks are even said to have a negative influence on human health. Also, improper detection of air pollution benchmarks results in severe complications for humans and living creatures. To address this aspect, a novel technique called, Discretized Regression and Least Square Support Vector (DR-LSSV) based air pollution forecasting is proposed. The results indicate that the proposed DR-LSSV Technique can efficiently enhance air pollution forecasting performance and outperforms the conventional machine learning methods in terms of air pollution forecasting accuracy, air pollution forecasting time, and false positive rate.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.