Abstract

In the digital era, Braille displays enable visually impaired people to easily access information. Different from traditional piezoelectric Braille displays, a novel electromagnetic Braille display is realized in this study. The novel display has the advantages of a stable performance, a long service life and a low cost and is based on an innovative layered electromagnetic driving mechanism of Braille dots, which can achieve a dense arrangement of Braille dots and provide a sufficient support force for them. The T-shaped screw compression spring, which causes the Braille dots to fall back instantaneously, is optimized to achieve a high refresh frequency and to enable visually impaired people to read Braille quickly. The experimental results show that under an input voltage of 6 V, the Braille display can work stably and reliably and provide a good fingertip touch; the Braille dot support force is greater than 150 mN, the maximum refresh frequency can reach 50 Hz, and the operating temperature is lower than 32 °C. Therefore, this cost-effective Braille display is expected to benefit a vast number of low-income visually impaired people in developing countries and improve their learning, working and living conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.