Abstract

A novel redox-responsive amphiphilic polymer was synthesized with bioreductive trimethyl-locked quinone propionic acid for a potential triggered drug delivery application. The aim of this study was to synthesize and characterize the redox-responsive amphiphilic block copolymer micelles containing pendant bioreductive quinone propionic acid (QPA) switches. The redox-responsive hydrophobic block (polyQPA), synthesized from QPA-serinol and adipoyl chloride, was end-capped with methoxy poly(ethylene glycol) of molecular weight 750 (mPEG750) to achieve a redox-responsive amphiphilic block copolymer, polyQPA-mPEG750. PolyQPA-mPEG750 was able to self-assemble as micelles to show a critical micelle concentration (CMC) of 0.039% w/v (0.39mg/ml, 0.107mM) determined by a dye solubilization method using 1,6-diphenyl-1,3,5-hexatriene (DPH) in phosphate-buffered saline (PBS). The mean diameter of polymeric micelles was found to be 27.50nm (PI = 0.064) by dynamic light scattering. Furthermore, redox-triggered destabilization of the polymeric micelles was confirmed by (1)H-NMR spectroscopy and particle size measurements in a simulated redox state. PolyQPA-mPEG750 underwent triggered reduction to shed pendant redox-responsive QPA groups and its polymeric micelles were swollen to be dissembled in the presence of a reducing agent, thereby enabling the release of loaded model drug, paclitaxel. The redox-responsive polyQPA-mPEG750 polymer micelles would be useful as a drug delivery system allowing triggered drug release in an altered redox state such as tumor microenvironments with an altered redox potential and/or redox enzyme upregulation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.