Abstract

In this paper, we introduce a novel reconfigurable hardware architecture for computing the polynomial matrix multiplication (PMM) of polynomial matrices/vectors. The proposed algorithm exploits an extension of the fast convolution technique to multiple-input, multiple-output (MIMO) systems. The proposed architecture is the first one devoted to the hardware implementation of PMM. Hardware implementation of the algorithm is achieved via a highly pipelined, partly systolic FPGA architecture. We verify the algorithmic accuracy of the architecture, which is scalable in terms of the order of the input matrices, through FPGA-in-the-loop hardware co-simulations. Results are presented to demonstrate the accuracy and capability of the architecture.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.