Abstract

Rearrangements of mitochondrial DNA gene order have been suggested as a tool for defining the pattern of evolutionary divergence in arthropod taxa. We have employed a combination of highly conserved insect-based polymerase chain reaction (PCR) primers with long-PCR to survey 14 noninsect arthropods for mitochondrial gene rearrangements. The size of the amplified fragments was used to order the primer containing genes. Five chelicerates exhibit amplicons that are consistent with the presumptive ancestral arthropod mtDNA gene order. These five species comprise two soft ticks, two prostriate hard ticks, and an opilionid. Six other chelicerates, all metastriate hard ticks, have a different arrangement that was originally discovered by this procedure and has been previously detailed in a complete mtDNA sequence. Three new arthropod mtDNA gene arrangements are described here. They were discovered in a terrestrial crustacean (Isopoda) and two myriapods (Chilopoda, centipede; Diplopoda, millipede). These rearrangements include major realignments of some of the large coding regions and two possible new positions for the tRNA(Met) (M) gene in arthropods. The long-PCR approach affords an opportunity to quickly screen divergent taxa for major rearrangements. Taxa exhibiting rearrangements can be targeted for DNA sequencing of gene boundaries to establish the details of the mtDNA organization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.