Abstract
This paper proposes a novel reactive power control strategy to reduce the capacity of the previously proposed smart charger for electric vehicles (EVs) on single-phase three-wire distribution feeders. The proposed reactive power control strategy is based on the constant dc-capacitor voltage control of the grid-connected PWM rectifier. Any calculation blocks of load-side active current are not needed. Thus, we offer the simplest reactive power control strategy. The basic principle of the proposed reactive power control strategy is discussed in detail, and then confirmed by a digital computer simulation using PSIM software. A prototype experimental model is constructed and tested. Experimental result demonstrates that balanced source currents with a power factor of 0.9, which is acceptable value in Japanese home appliances, are obtained on the secondary side of the pole-mounted distribution transformer during battery charging operation in EVs reducing the capacity of the smart charger by 36% as compared with that of the smart charger with the previously proposed control strategy.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.