Abstract

AbstractHitherto there was no reaction known that permits transformations of R1R2‐CO → 0.5 R1R2R3C–CR1R2R3 in one step. This type of additive–reductive carbonyl dimerization is now possible using alkoxy(alkyl)tungsten(v) complexes with aromatic, heteroaromatic or α,β‐unsaturated aldehydes and ketones. When a corresponding phenyl complex was employed in a test experiment, it was revealed that an aliphatic ketone could be used as the substrate in this reaction. A second interesting type of reaction is the transformation of CH3 ligands into μ‐CH2 ligands, which occurs during the treatment of MeLi or Me3Al with molybdenum or tungsten chlorides (oxidation states VI and V, for Mo additionally IV) at low temperatures with liberation of CH4. Here, the question arises as to whether the intermediate involved has a terminal CH2 ligand (Schrock carbene complex) or a μ‐CH3 ligand (CH3 bound by a two‐electron three‐center bond to two metal atoms). Of all the μ‐CH2 complexes obtained, those which were synthesized by the action of MeLi on molybdenum chlorides can be recommended as reagents for carbonylmethylenation of aldehydes and ketones. They display high selectivity, very low basicity, a surprising resistance to protons, they are readily available, can be easily modified and, as regards their selective behavior, they have been investigated more thoroughly than other readily accessible carbonylmethylenation reagents of comparable selectivity. The results of NMR spectroscopic investigations on the structure of the μ‐CH2 complexes, and associated reaction mechanisms are discussed. A survey of carbonylmethylenation reagents, which have been reported in the literature, permits comparisons to be made with carbonylmethylenating molybdenum and tungsten complexes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call