Abstract

The performance of diamond/nickel metal matrix composites (MMCs) produced using a novel microwave plasma technique, rapid discharge sintering (RDS), and conventional tube furnace sintering in argon is compared. The MMCs were sintered at temperatures between 850 and 1050°C in both cases. The RDS treatments were carried out at 20 mbar in plasmas containing hydrogen or hydrogen–nitrogen gases. The addition of nitrogen gas to the hydrogen plasma facilitated a substantial increase in composite firing temperatures. A significant reduction in sintering times, to 10 min from several hours, was achieved using the RDS technique. A further advantage of the RDS treatments was the absence of any diamond graphitisation (as detected by X-ray diffraction), which was reflected in higher sintered densities and flexural strength for RDS than for furnace sintering.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.