Abstract
Confinement of single ions in a novel radio-frequency (RF) quadrupole ion trap with spherical shape is investigated. An optimization of this spherical ion trap (SIT) is carried out in order to suppress its nonlinearity substantially by eliminating the electric octupole moment. Hence, a trapping potential and consequently an electric field very similar to the ideal quadrupole ion trap (QIT) are obtained. Afterwards, three stability regions for the optimized SIT are numerically computed. The regions coincide well with those reported in the literature for the ideal QIT. The reason is attributed to the zero electric octupole moment of our proposed trap. The simple geometry of our optimized SIT and relative ease of fabrication along with its increased trapping volume in comparison with the conventional hyperbolic quadrupole ion trap, make it an appropriate choice for miniaturization.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.