Abstract

In this work DHPMs were combined with the quinoline nucleus to obtain new quinolinyl-pyrrolo[3,4-d]pyrimidine-2,5-dione compounds with improved antiplasmodial activity as well as decreased cytotoxicity. Nineteen quinolinyl-pyrrolo[3,4-d]pyrimidine-2,5-dione derivatives connected by a linker group to quinolone ring moieties with different substituents were synthesized and assayed against P. falciparum. Nineteen quinolinyl-pyrrolo[3,4-d]pyrimidine-2,5-dione derivatives connected by a linker group to quinoline ring moieties with different substituents were synthesized and assayed against chloroquine-resistant Plasmodium falciparum, along with the reference drug chloroquine. Among these compounds, the derivatives with two methylene carbon spacers showed the best activity accompanied by low cytotoxicity. The derivative without substituents on the aromatic ring (2a) and the derivative with a chlorine group at position 4 (2d) provided the best results, with IC50 = 1.15 µM and 1.5 µM, respectively. Compared to the parent drugs, these compounds presented marked decreases in cytotoxicity, with MDL50 values over 1,000 µM and selectivity indexes of >869.5 and >666.6, respectively. The quinolinyl-pyrrolo[3,4-d]pyrimidine-2,5-dione framework appears to be promising for further studies as an antimalarial for overcoming the burden of resistance in P. falciparum.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call