Abstract
In this paper, a model for multimedia transmission over downlink shared channel in 3.5G wireless network is presented. The multimedia stream consists of multiplesubstreams that are aggregated into one real-time and onenonreal-time flows. Correlation with each flow and between flows is assumed. Additionally, we propose a combined time-space priority buffer management scheme to optimise quality of service requirements for each flow. The problem is formulated in terms of a queue with two priority classes, one of which has time priority while the another has space priority. The input is described by the Batch Marked Markovian Arrival Process (BMMAP). Service time distributions are of PH (phase) type dependent on the class of a customer. The buffer is finite, but the customers of a class having higher priority for taking into the service from a buffer (time priority) can occupy only a part of this buffer. Queueing system's behavior is described in terms ofmulti-dimensional continuous time skip-free to the left Markov chain. It allows to exploit an effective algorithm for calculation of the stationary distribution of the queueing system. Loss probability for customers of both classes is calculated. Waiting time distribution for priority customers is calculated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.